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Abstract 

We study nonintegrable Hamiltonian dynamics: f.! (I1f}) = Uo 

for large k;that is,far from integrability. An integral representation 

is given for the conditional probability tl that 

the system is at 11 fZ at t, given it was at :;!01 §0 at t 0 • By discretizing 

time into steps of size E. , we show how to evatuate physical observables 

for large k, fixed ~ . An explicit calculation of a diffusion 

coefficient in a two degree of freedom problem is reported. Passage 

to ~ = 0, the original Hamiltonian flow, discussed. 
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In this note we study Hamiltonian systems which are very 

far from integrable. For action ( ~), angle ( ~) canonical 

co~ordinates we are interested in Hamiltonians of the form 

) t l ) 

when k is large. The small k behavior of the motion generated by (1) 

has been extensively studied in perturbation theory. We are 

interested here in the opposite limit where one encounters complicated, 
. 1 . 1. 1rregu ar mot1on. 

Our central tool is the conditional probability P( ~ 1t I W,i0 ) 

that the system is at k = (I, , .fi) at t given it resided at ):i = (1 0 , ~0 ) 

The motion arising from (1) is , of course , deterministic, 

but we expect the irregular behavior at large k to be describable 

by probabilistic ideas such as diffusion. The use of the conditional 

probability to discuss this intrinsic stochasticity is quite 

appropriate. 

The conditional probability satisfies Liouville's equation2 · 

with the initial condition 

- '1iY ) .-.. . 
The general solution to this iJ given in terms of the solution to 

Hamilton's equations of motion,~(~,t), which at t=O satisfies ~~,0) = ~· 

We have 

If we split the interval t 0 to t into N segments of length e , 
t ~ t 0 = Ns, we may repeatedly use the property of a conditional 

probability 

p 

~2~ 

( 

) 



to write 

'P to)= ~ :00 ) b ( l ) ~ 
N 

X p ( )£ ts: +SE I X ~I)) ;:: -S"'( 

We require,then, the elementary conditional probability 

) 

Now we must discretize the equations motion 

(":!Jii) -- .._ ( ( ~, i) ) 

which we do in the form 

I [~ ( W, ) - - ( 1:$/J I ) -. (~(w> I)) 

leading to 

Ci! 

x d (,~(s)- )S (s-1)- ~ ~ 
Sr::l 

In the case of Hamiltonian dynamics coming from(l), we take 

for the discretized equations of motion the phase space volume 

preserving mapping 

(n) = (n-l)+€~t(! ) I (Y\-1)) 

(7) 

{g) 

(q) 

()\).: { + E (*{t<~)) + s. ~ ~~ (Il)\)}~(h-1)) I 

where I ( t'li) , ~ ( t"') are written as l.Cn) and fl (n) , ~::: I , 

((o) 

( ll) 

( ) 

.b = - 'fJU,f-afJ, ,h1 = ~U~ • The conditional probability PU;
1 
~ I I~> 1 ~01 ) 

follows directly from (10). In the limit 

actual H;;nnil tonian flow, and (10) becomes 

( f2, 
J 
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O,we return to the 



( ) ~ 
) ~ (t)- ) 

!I (JbJ/~ {r))) i 

(r3) 

up to an overall normalization factor. This functional integral 

representation has been given earlier~· 
Our goal is to utilize (10) to study physical properties of 

our Hamiltonian dynamics at fixed £ for large k, and then we use 

this information to extrapolate back to S ~o. We proceed by representing 

each ~ ( ~ - s ~ ) in (10) by a fou_;rier series. 

For the delta functions representing evolution in the angle variables, 

this is quite natural since each ( e, (is, )b... ) lies in 

. For the actions to remain in a finite interval, 

we require that the energy surface H(I,~) =constant--on which 

the orbits lie, be bounded. Then if any IOI. appears in H with 

maximum power p, the values of I~(t5 ) lie more or less in the range 

;$I (is)I11EI Thus, on~the energy shell, each IQCts)'takes 

values in some finite :interval. Denotillf the. length of this interval 

by 14$, we write (13) as 

X 7[ 
tt 'm~s!:'·OO 

[ (s-1))] J 1 

where is a vector of integers. 

To evaluate for largEt k, ~ e , we choose 

that combination and m~~ values which result in the 

smallest number of oscillating integrands of the form 

exp ik(functions of ~(s) and (s) ) . This smallest number will 

be zero, resulting from the choice m u.s "' 0. Then we can 

arrange to have the next smallest number of oscillating integrands 
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by judicious choice of is and m 5 . If this number is n1 , then 

corrections to the leading term will be (oscillating function 

of k)/ kng/ 2 which we derive from the stationary phase approximation. 

After that we go on to n2 > n1 oscillating integrands, then n3 ) n2, 

etc., so deriving an asymptotic series for ('ift/ 
We illustrate these general remarks by the Hamiltonian with 

two degrees of freedom 

+ J e, + 

+ J 
which has a bounded energy surface and for small k always has 

overlapping resonances4 · in the physical region. By the surface 

of section method1 ' we have numerically concluded that for p r 0, 

the motion generated by (15) is non-integrable. In Figure 1 we 

show the 11 , e 1 plane at 9 2 = 0 for p = 1.0,k/2~ = 110. 

Using the technique outlined above we evaluated the diffusion 

coefficient defined by (t ::: t 0 + N £) 

(t5) 

~~i J Ia,€>o/to) ~~L,) G( 

( :: M ~t· l)) "~ 

) 

X 
5:::1 1l. ;:-¢0 .... s 

eV.:(£1~1·11)], 
The leading terms in D are ( 

( .-._,; 

~ la~~"S e 
E1 f fiJ\e>ol 
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+ 

where J.RJz) is the ordinary Bessel function. For "' 0 the 

discretized volume preserving mapping arising from the Hamiltonian 

(15) is the Chirikov standard mapping4
· with parameter }l. Indeed, 

for p = 0, (19) reduces to the results of Rechester and White5 · 

including a correction, the J 2 (~) 2 term, pointed out by R. Cohen6
· 

It is important to note that our derivation of D(I ,k) contains 
""0 

no assumed randomness added to the Hamiltonian equations of motion. 

A non-zero diffusion coefficient arises from the intrinsic 

stochast of the motion.(External random forcing can be 

incorporated into our representation for P(~,t I ~,t0 ) in 

a straightforward fashion. This will be discussed by us in the 

near future. 7 · ) In Figure 2 we compare the asymptotic form (19) 

for p = 1.0 to a direct numerical evaluation of D(I ,k) from its 
""0 

definition (16). 

Returning to the original flow, namely~ = 0, is accomplished 

by the following observations. When E~ 0, we require the diffusion 
.... 

coefficient D(!
0

,k) given by 

From (19) we see this has the form 

with y = and a dimensionless function. We have evaluated 

JB(w 1 p) as a series in y near y = 0, and require its value at 

( 

(~c) 

y = 00 The standard techniques for making such an extrapolation8· 

need knowledge of a large number of terms in the series we have 

begun in (19). The result of determining these terms and carrying 
ll. 3/~ " \ out the desired extrapolation will yield D= Jf< rlJ ~}, 

-6-



dimensionless. This work will be reported in another paper. 

We note here only the change in k dependence from the diffusion 

of actions in the mapping. 

Our general technique has provided us with a tool 

for learning the behavior of physical quantities in the limit 

where the Hamiltonian,Equation (1), is very non-integrable. Most 

interesting among these physical quantities are those, like 

our diffusion coefficient, which characterize the intrinsic 

stochasticity of the chaotic orbits of the system. These are 

not amenable to calculation by perturbation theory in k; they 

must vanish in every order since diffusion or intrinsic 

stochasticity is not a small k phenomenon. Passage to the 

original flow from our discretized phase space volume preserving 

mapping requires some labor and may be subtle; still our results 

find direct application to mappings known to accurately 

approximate a physical flow. Finally by use of these methods 

one may hope to learn much about more complicated intrinsically 

stochastic motions,such a fluid turbulence at large Reynolds' 

number with no artificial external forcing or externally 

imposed random boundary or initial conditions. 
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Figure Captions 

Figure 1 Surface of section plot for an orbit generated by our 

Hamiltonian, Equation (15). We show the I 1 , fJ 1 plane 

for 6
2 

= 0. The initial conditions were r1 (0) = 3.0, 

I
2

(0) = 1.0, e
1

(0) = 0.743, and 6 2 (0) = 0,0, The 

parameters k and f were k/2'1t = 110 and F"' 1.0, 

Figure 2 2 D/k from the asymptotic form of (19) compared to the 

numerical evaluation (points labeled by N) for 10 ~ k ~50, 

p = 1. 0, E. = 0. 5. In this plot X =3.11't.ai has the range 

15.7 :5 K ~ 78.5. The deviation of the numerical 

results from the analytic 'form is less than 4% and 

is consistent with the relatively small number of 

initial values of - 96 in each angle. 
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